
Pycimen Language Reference

Syntax:

Blocks are defined by indentation
Variable assignments use the = symbol.
Expressions are generally the same as in Python

Data Types:

int - Integers
float - Floating-point numbers
string - String literals
boolean - True and False
None - Equivalent to Python's None

Pycimen supports the basic data types:

Operators:

Arithmetic operators: +, -, *, /, %
Comparison operators: <, >, ==, !=, <=, >=
Logical operators: and, or, not
Bitwise operators: &, |, ^, <<, >>

Pycimen supports the following operators:

Control Flow:

if / elif / else
while loop
for loop
break
continue
pass

Pycimen supports the following control flow statements:

Functions:

Functions are defined with the def keyword and parameters are specified in parentheses.

1

2

Classes:

Pycimen supports class definition with the class keyword.

Other Features:

The print statement works the same as in Python.
The return statement is also used as in Python.

Hint:

Pycimen does not currently support dictionaries, sets, and tuples as in Python.

1. Syntax Rules

1.1. Indentation

In Pycimen, code blocks are defined by indentation. Indentation can be created using
spaces or tab characters, but mixed use within the same block is not allowed.

if x > 0:
 print("Positive") # Correct
 print("Value")

if x > 0:
 print("Positive") # Incorrect! Mixed indentation
 print("Value")

1.2. Line Breaks

In Pycimen, many statements can be written on a single line, but for longer statements,
multiple lines can be used. The backslash "" character is used for this purpose.

x = 1 + 2 + \
 3 + 4

3

1.3. Comment Lines

Single-line comments start with the # character.

Bu bir yorumdur
print("PyCimen") # Bu da bir yorum

1.4. Multiline Comments/Docstrings

Multiline comments or docstrings are enclosed in triple quotes (""" or ```).

"""
This is a
multiline
docstring.
"""

2. Data Types
Pycimen supports the following basic data types:

Data Type Description Example

int

float

str

bool

None

Represents whole numbers.

Represents numbers with decimal places.

Represents text enclosed in single or
double quotes. Can also span multiple
lines using triple quotes

Represents logical values: True or False.

Represents the absence of a value.

42, -100, 0

3.14, -5.23, 1.7e10

"Hello, World!", 'Python
Programming', """This is a
multi-line string."""

True, False

None

4

x = 42 # int
pi = 3.14 # float
msg = "PyCimen" # string
a = True # boolean
b = None # Nothing object

3. Operators

3.1 Arithmetic Operators
Arithmetic operators are symbols used to perform basic mathematical operations on
numbers. The most common arithmetic operators are:

Symbol Operation Example

+

-

*

/

%

Addition

Subtraction

Multiplication

Division

Modulus

7 + 3 = 10

10 - 4 = 6

5 * 6 = 30

15 / 3 = 5.0 (Floating-point division)

15 // 3 = 5 (Integer result)//

**

Integer Division

Exponentiation

15 % 3 = 0 (Remainder 0)

3 ** 4 = 81 (3 to the power of 4)

5

3.2 Comparison Operators

Comparison operators are symbols used to compare two expressions and determine the
relationship between them. The most common comparison operators are:

Symbol Operation Example

<

>

==

!=

<=

Less than

Greater than

Equal to

Not equal to

Less than or equal to

x < y

x > y

x == 5

x != y

x >= y>= Greater than or equal to

x <= y

Result

x is less than y

x is greater than y

x is equal to 5

x is not equal to 5

x is less than or equal to y

x is greater than or equal to y

x = 5
y = 7
x < y # True
x > y # False
x == 5 # True
x != y # True

3.3 Logical Operators
Logical operators are symbols used to combine two or more logical expressions and
produce a new logical value. The most common logical operators are:

Symbol Operation Example

and

or

not

And

Or

Not

x and y

x or y

not x

Result

Both x and y are true

Either x or y is true

x is false

6

3.4 Bitwise Operators

Bitwise operators are symbols used to perform bit-level operations on the bits of binary
numbers. The most common bitwise operators are:

Symbol Operation

&

|

^

~

<<

Bitwise AND

Bitwise OR

Bitwise XOR

Bitwise NOT

Left Shift

>> Right Shift

Description
Compares each bit of two numbers. If both bits are 1,
the result is 1. Otherwise, the result is 0.
Compares each bit of two numbers. If both bits are 0,
the result is 0. Otherwise, the result is 1.

Compares each bit of two numbers. If the two bits are
different, the result is 1. Otherwise, the result is 0.

Inverts each bit of a number. 1 becomes 0, and 0
becomes 1.

Shifts the bits of a number to the left by the specified
number. Shifted bits are filled with zeros.

Shifts the bits of a number to the right by the specified
number. Shifted bits are lost.

x = 0b1010 # Binary: 10
y = 0b1100 # Binary: 12

x & y # 0b1000 - Result: 8
x | y # 0b1110 - Result: 14
x ^ y # 0b0110 - Result: 6
~x # 0b0101 - Result: 5 (One Inverse: -(x+1) = -(10+1) = -11 = 0b....0101)
x << 2 # 0b10100 - Result: 20
x >> 1 # 0b0101 - Result: 5

3.5 Assignment Operators

Assignment operators are symbols used to assign values to variables. They can also be
combined with arithmetic or bitwise operations to perform calculations and assign the
result to a variable. The most common assignment operators are:

7

Symbol Operation

=

+=

-=

*=

/=

Value
assignment

%=

Description Example

//=

**=

&=

|=

^=

<<=

>>=

Addition
assignment

Subtraction
assignment

Multiplication
assignment

Division
assignment

Modulus
assignment

Integer division
assignment

Exponentiation
assignment

Bitwise AND
assignment

Bitwise OR
assignment

Bitwise XOR
assignment

Left shift
assignment

Right shift
assignment

Assigns a value to a variable.

Adds a value to the existing value of a variable and
assigns the result to the variable.

Subtracts a value from the existing value of a
variable and assigns the result to the variable.

Multiplies the existing value of a variable by a value
and assigns the result to the variable.

Divides the existing value of a variable by a value
and assigns the result to the variable.

Performs modulus division (remainder) on the existing value
of a variable and a value and assigns the result to the
variable.
Performs integer division (division without decimals) on the
existing value of a variable and a value and assigns the
result to the variable.

Raises the existing value of a variable to a power and
assigns the result to the variable.

Performs a bitwise AND operation on the existing
value of a variable and a value and assigns the result
to the variable.

Performs a bitwise XOR operation on the existing
value of a variable and a value and assigns the result
to the variable.

Performs a bitwise OR operation on the existing value
of a variable and a value and assigns the result to the
variable.

Performs a bitwise XOR operation on the existing
value of a variable and a value and assigns the result
to the variable.

Shifts the bits of the existing value of a variable to the
left by the specified number and assigns the result to
the variable.

x = 5

x += 3

x -= 2

x *= 3

x /= 2

x %= 5

x //= 2

x **= 3

x &= 7

x |= y

x ^= 3

x <<= 2

x >>= 1

8

4. Control Flow

4.1. if Statements

if statements are used to execute specific code blocks based on a condition.

x = 5

if x < 0:
 print("Negative")
elif x == 0:
 print("Zero”)

4.2. while Loops

while loops repeatedly execute a block of code as long as a certain condition remains true.

x = 0
while x < 5:
 print(x)
 x += 1

4.3. for Loops

For loops are used to iterate over iterable data structures such as lists, arrays, ranges, and
strings. The for loop executes the code block in its body for each item in the iterable. You
can use the loop by making it an in method.

e = [1, 2, 3, 4]

for val in e:
 print(val)

9

4.4. break and continue Statements

break and continue statements are used to control the flow of loops in Python.
break allows you to exit a loop prematurely, even if the loop condition is still true.
continue skips the current iteration of the loop and moves on to the next one.

x = 0
while True:
 x += 1
 if x > 10:
 break
 if x % 2 == 0:
 continue
 print(x)

4.5. pass

This can be used in situations where you do not want any operation to be performed on that
line.

def func():
 if True:
 pass # Code will be added here later
 else:
 # ...

func()

5. Functions

In Pycimen, functions are defined using the def keyword. The function name is followed by
parentheses containing the function parameters. The function body is separated by a double
colon (:) and consists of a code block.

10

def add(a, b):
 """
 This function adds two numbers.
 """
 return a + b

total = add(3, 5)
print(total) # Output: 8

Function Parameters:
Function parameters are defined as identifiers separated by commas within parentheses.

def function(param1, param2, param3):
 # code block

5.1. return Statement
The return statement is used to return values from functions in Python. When a function is
called, the value specified in the return statement is assigned to the function.

def square(x):
 """
 Calculates the square of a number.
 """
 return x * x

result = square(5)
print(result) # Output: 25

Without return Statement:
If a function does not contain a return statement, the function automatically returns the None
value. This means that the function does not produce any value.

11

def greet():
print("Hello!")
message = greet()
print(message) # Output: None

5.2. Nested Function Definitions
In Pycimen, functions can be defined inside other functions. This allows you to write more
complex and modular code.

def cube(x):
 """
 Calculates the cube of a number.
 """
 def square(y):
 """
 Calculates the square of a number.
 """
 return y * y
 return square(x) * x

result = cube(3)
print(result) # Output: 27

6. Classes

In Pycimen, classes are defined using the class keyword. The class body is separated by a
double colon (:) and defined with a code block.

 Note:

The special method __init__() within class definitions is automatically called when an object is created. This method is used
to initialize the attributes of the class.

12

class Car:
 """Car class"""

 def __init__(self, brand, model):
 self.brand = brand
 self.model = model

 def display_info(self):
 print(f"{self.brand} {self.model}")

car1 = Car("Toyota", "Corolla")
car1.display_info() # Output: Toyota Corolla

7. Module Import

In Pycimen, functions or classes from other modules can be imported using the import
statement. This facilitates code reuse and modularity.This extends to a wide array of
domains, ranging from game development to artificial intelligence and data analysis. With
this capability, practitioners can harness the full spectrum of libraries and tools available in
our language, essentially bringing all the functionalities we commonly associate with Python
into our ecosystem.

Moreover, by incorporating these functionalities while benefiting from the speed and
efficiency characteristic of C++, Pycimen transcends the performance limitations often
associated with Python. This integration of versatility and speed empowers developers to
craft solutions that are not only comprehensive but also optimized for efficiency, facilitating
the creation of professional-grade applications across various domains.

Note: In Pycimen, user-defined modules can be imported in addition to standard modules. The module name
should be used without the file extension.

13

import numpy
import pandas

a = numpy.random.randn(6, 4)
print(a)

b= a.mean()
print("Mean")
print(b)

data = [60, 58, 42, 55]

df = pandas.DataFrame(data)
print("First 5 rows:")
print(df.head())

print("Basic statistics:")
print(df.describe())

print("Column means:")
print(df.mean())

print("Column standard deviations:")
print(df.std())

